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ABSTRACT 

Seaweb is a wide-area network interconnecting a set of distributed underwater 

nodes through the use of a DSP-based acoustic communications modem at each node and 

through-water digital acoustic links between neighboring nodes. As a by-product of 

Seaweb communications, the distances between neighboring nodes are obtained from the 

round-trip acoustic travel-time measurements. If the network is deployed in an ad hoc 

distribution, or if an established network is disturbed, the locations of the nodes are 

unknown to the operator. This thesis uses the node-to-node ranges, which have been 

compiled at the designated master node, as input to an algorithm for estimating the 

relative locations of all nodes.  Synthetic network geometries serve to evaluate the 

algorithm with perfect ranges and with imperfect ranges and/or incomplete data.  Seaweb 

networks deployed at sea are the final test of the algorithm. 
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I. INTRODUCTION  

A. PROBLEM STATEMENT 

Seaweb is an acoustic communications technology enabling underwater sensor 

networks.  Data packets usually flow from a sensor node to the master node, with 

command and control packets flowing in the reciprocal path.  More generally, a network 

packet begins at the source node, travels through repeater nodes, and ends at the 

destination node.  The network routes are dictated by routing tables stored in the acoustic 

modems.  Prior to Ong’s development of the Seaweb ad hoc discovery process [1], the 

routing tables were initialized and maintained by the operator.  By using the algorithms 

developed in [1], Seaweb networks are now capable of self-determining the routing 

tables, thereby allowing the network to be deployed with an ad hoc distribution.  

However, with ad hoc deployments, the operator may not know the locations of the nodes 

within the network.  When the routing algorithm from [1] is implemented, the node-to-

node ranges are measured through the use of acoustic propagation time delays and 

assumptions about the speed of sound in water.   

Previous thesis work by Hahn [2] and Ouimet [3] used acoustic communication 

ranging in the Seaweb network for localizing unmanned underwater vehicles (UUVs).  

Respectively, their methods involved weighted solutions and center of mass approaches.  

Later, Reed  [4] used the method of difference linearization, based on the principles used 

in the Global Positioning System (GPS), to produce superior results for tracking UUVs. 

This thesis uses the formulas developed in [4] to estimate the relative positions of 

the nodes using planar trigonometry.   

B. SCOPE 

1. Objective of Algorithm  

The algorithm produced in this thesis uses the range data measured during the 

Seaweb discovery process to estimate the horizontal positions of the discovered nodes.  
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This is accomplished by first setting up a horizontal coordinate system that can be used as 

a frame of reference.  The origin is fixed at the location of the master node because it is 

usually able to self locate by means of GPS.  The positive x-axis is oriented to intersect 

with a neighbor node of the master.  This node is referred to as the ‘on_X’ node and is 

preferably located along a known line of bearing from the ‘master’ node to allow the end 

user to translate the x-y coordinate system to a traditional latitude-longitude grid. 

Next, range data gathered each time a node conducts a broadcast ping are 

organized into a time-stamped N N  matrix.  These matrices are compiled into a stack 

that is sequenced by the time-stamp.  The algorithm then looks down each column of the 

stack and statistically analyzes all the ranges available between a particular pair of nodes, 

eliminating any ranges that fall outside a ten percent confidence interval from the mean.  

Next the algorithm uses the filtered mean ranges and localizes the node positions using 

the formulas outlined in [4].  Due to ambiguous solutions when insufficient ranges are 

known for a particular node, several solution sets may be possible.  The output of the 

algorithm is the x-y position of each node and a visual representation of each ambiguous 

solution. 

2. Limitations Not Addressed 

While the algorithm estimates the relative horizontal locations of the network 

nodes, it does not attempt to then rectify these locations to the traditional latitude- 

longitude coordinate system.  The algorithm also does not attempt to correct for range 

errors inherent to the method used to derive them; it simply eliminates statistical outliers 

from the range data in an attempt to find the best solution given all the data.   

C. OUTLINE OF THESIS 

Chapter II is an overview of Seaweb equipment and operations, including the 

acoustical method used to measure inter-node ranges.  Chapter III then addresses some of 

the errors inherent with this ranging method.  Chapter IV discusses the localization 

methods used by the algorithm, and Chapter V details their implementation.  Chapter VI 

describes results obtained with various synthetic data, including error-free as well as 
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incomplete and/or inaccurate data.  Chapter VII analyzes the range data from Seaweb sea 

trial testing.  Chapter VIII summarizes the conclusions reached in the thesis, and Chapter 

IX discusses recommendations and possible further research. 
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II. BACKGROUND 

A. SEAWEB OPERATIONS 

Seaweb is a networking technology supporting underwater communication 

between any number of fixed sensor nodes, repeater nodes, and gateway nodes. It is also 

configurable to communicate with mobile nodes including submarines and UUVs [5, 6].  

Communications through the water with only a single gateway node at the sea surface 

improves both the stealth and survivability of the network.  A representative deployment 

of Seaweb is shown in Figure 1, where the network includes a submerged UUV, a radio-

acoustic communication (racom) buoy acting as the gateway node, and repeater nodes.  

The UUV uses the network infrastructure while submerged, and the UUV itself can act as 

a gateway node while on the surface. 

 

Figure 1.   Typical Seaweb configuration consisting of both fixed nodes mounted on the 
seabed along with UUVs acting as mobile nodes (from [2]). 
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1. Equipment  

 The physical composition of Seaweb consists of three components: the Seaweb 

server, underwater sensor/repeater nodes, and a gateway buoy that allows interactions 

between the server and underwater nodes.  The Seaweb server is physically located either 

onboard a control ship or ashore, the only requirement being that radio communications 

with the gateway buoy are available.  If direct radio communications are not possible 

with the gateway buoy, demonstrated alternatives are an Iridium satellite link or cellular 

telephone modem.  The Seaweb server is used by the operator to command, control and 

monitor the deployed network [7]. 

 The racom gateway buoy is moored at a convenient location within the Seaweb 

domain, either near the center to maximize the number of underwater nodes that it is in 

direct contact with, or at the edge to ensure a line-of-sight radio link to the Seaweb 

server.  The buoy is maintained in place by an anchor and swivel system moored on the 

ocean floor.  The surfaced portion of the buoy consists of solar panels, radio 

communication equipment, satellite communication equipment, and a GPS receiver.  

Seaweb acoustic communications occur in the 9-14 kHz frequency band through a 

submerged acoustic transducer married to the mooring line.  Figure 2 depicts the racom 

gateway buoy configuration used at the St. Margaret’s Bay sea trials. 

 

Figure 2.   Racom gateway buoy (from [1]). 
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Underwater fixed nodes are generally sensor nodes or repeater nodes.  The 

repeater nodes are moored to the seabed and usually consist of anchor, acoustic release 

module, telesonar modem, and subsurface float.  The telesonar modem is commercially 

available from Teledyne Benthos, Inc. and is programmed with specialized Seaweb 

networking software and firmware [8].  The acoustic release serves for recovery of the 

repeater node.  Figure 3 shows a typical deployed configuration of a repeater node. 

 

Figure 3.   Seaweb repeater node using a telesonar modem (from [5]). 

2. Network Layout 

 Seaweb networks can consist of any number of underwater nodes and gateway 

buoys, and the network routes are reconfigurable if a node failure occurs.  Most Seaweb 

layouts consist of a single gateway node that is positioned in locations to maximize its 

survivability, i.e., out of ship traffic lanes and away from other near shore hazards.  Often 

the gateway buoy is identified as the ‘master’ node, since it is in direct radio contact with 

the server.  The term ‘master’ node is also used in the localization process, and since the 

gateway buoy position at the sea surface is known from GPS, it provides a geographic 

reference point.  Care must be taken when deploying the first underwater node since this 

is the second reference point used by the localization algorithm, known as the ‘on_X’ 
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node in the localization algorithm.  The ‘on_X’ node should be deployed along a known 

line of bearing from the ‘master’ node thereby allowing the operator to fix the location of 

these two nodes on a nautical chart.   

 

Figure 4.   Location of Seaweb nodes in June 2008 at St. Margaret’s Bay sea trial.  Node 
3 (in red) was the gateway buoy and master node (from [1]).   

 The rest of the network nodes are positioned in the area of interest. Typically, the 

layout is designed such that multiple communication routes are available for data transfer 

to each node.  This increases the overall reliability of the network by producing 
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redundant routes.  The distance between the nodes can be expected to be one to five 

kilometers depending on the maximum acoustic communications range for the 

deployment environment.  Significant environmental factors include the sound-speed 

profile, the background noise level, and transmission loss [9].  Figure 4 shows the 

network layout used in the St. Margaret’s Bay sea trial in June 2008. 

3. Link-Layer Protocols 

Seaweb node-to-node communications use a link-layer protocol that allows for 

addressing, power control, adaptive modulation, and ranging [10].  The protocol uses a 

request to send (RTS) and clear to send (CTS) to establish first contact between two 

nodes prior to transferring data between the nodes.  Any corrupted data are requested to 

be resent by the receiving node using a selective automatic repeat request (SRQ).  This 

concept is diagrammed in Figure 5.  Following the same handshake strategy, Seaweb also 

supports a PING/ECHO protocol useful during the ad hoc discovery process. 

 

Figure 5.   Seaweb node-to-node communication scheme (from [10]). 

To determine the range between neighboring nodes, a hyperbolic frequency-

modulated (HFM) chirp precedes the PING packet sent by the first node (node i in Figure 

6, below).  Node j receives the ping and determines the time of arrival by picking the 

peak of a HFM matched filter.  Node j then waits a specified dwell time, j, prior to 
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issuing a return echo (with HFM) that follows the same path as the initial ping based on 

reciprocity.  Therefore, the reciprocal sound propagation delays between nodes i and j are 

equal,   

 ij jid d . (2.1) 

Once the echo is received at node i, the Seaweb modem measures the range between the 

two nodes based on the total delay time,   

j o ij ji jt dt d    ,              (2.2) 

and substituting Equation (2.1) and solving for dij gives 

2
j o j

ij

t t
d

 
 .        (2.3) 

Seaweb uses the assumption that the speed of sound in the ocean is co = 1500 m/s for 

determining the node-to-node range, 

ij o ijcr d  .       (2.4) 

 

Figure 6.   Seaweb ranging process (from [2]). 
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B. AD HOC DISCOVERY PROCESS 

1. Broadcast Ping 

Prior to the introduction of the ad hoc discovery process developed in [1], the 

routing tables were manually determined and maintained by the operator located at the 

Seaweb server.  After a Seaweb network was deployed in the water, the first operation 

performed was node-to-node ranging to verify that the pre-programmed routing tables 

were functional.  The Seaweb server initiated this process by directing the ‘master’ node 

to transmit a broadcast ping.  When the various repeater nodes detect the broadcast ping, 

they reply with an echo that confirms that they are within acoustical communications 

range, the ranges are calculated, and then communicated back to the server.  This process 

is depicted in Figure 7.  The operator then sequentially directed each node to repeat the 

broadcast ping process until all nodes were discovered and all ranges reported to the 

server.  All of this served only to confirm the validity of pre-programmed routes. 

(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry(a) Networked Command (b) Broadcast Ping (c) Echoes (d) Networked Telemetry

 

Figure 7.   The broadcast ping process (after [11]). 

2. Discovery 

The discovery process developed in [1] automates the initialization of network 

routes.  A summary of this process is shown in Figures 8, 9, and 10.  First the master 

node conducts a broadcast ping, and then the master node systematically commands each 

discovered node to conduct its own broadcast ping to potentially discover more nodes.  

The master node continues to direct all new nodes to conduct their own broadcast ping. 
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Upon completion, the master node algorithm determines the optimum route to each node 

according to a cost function that considers the number of nodes that are in the path and 

the ranges between each node.  A by-product of this process are data tables containing the 

ranges that each broadcast ping measured.  The algorithm developed in this thesis uses 

these range data tables to locate the network nodes. 

Figure 8.   Left: Ad hoc locations of nodes.  Right: Initial broadcast ping by master node, 
A, which discovers nodes B, C, and D (after [1]). 

Figure 9.   Left: Secondary broadcast pings by node B that discovers M, J, K, and 
determines range from B to C.  Right: Secondary broadcast ping by C that 
discovers node P and determines ranges from C to B and C to K (after [1]). 
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Figure 10.   Left: tertiary ping by P that discovers node Q.  Right: Depiction of routes to 
all nodes (after [1]). 
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III. SOURCES OF ERROR 

A. ACOUSTIC VARIABILITY 

1. Sound Speed Profile  

Two significant assumptions are made in the Seaweb estimation of node-to-node 

ranges, the first of which is that the sound speed, co, used in Equation (2.4) is 1500 

meters per second.  Sound speed in the ocean varies from 1480 m/s to 1520 m/s [12], 

which represents a 1.3%  deviation from the value assumed by Seaweb.  For example, if 

the true sound speed is 1480 m/s and the range between two nodes is 3000 meters, the 

reported range would be 3040 meters.  Assuming that the true sound speed is constant 

over the entire area of the network, this results in range solutions which are typically 

larger than the true ranges between the nodes.   

The second assumption made by the Seaweb range estimation is that sound travels 

in straight lines and hence is linearly related to range.  However, the variations in 

temperature, pressure, and salinity in the water column cause significant variability in the 

speed of sound.  This results in refraction as sound passes through the various layers of 

the water column.  To illustrate this, a representative sound speed profile is produced 

using Munk’s canonical profile [13] 

    0 1 1c z c e          (3.1) 

where 

 
 2 axisz z

B



  (3.2) 

 

and co is the sound speed at the sound channel axis, is the perturbation coefficient, zaxis 

is the depth of the sound channel axis, B is the scale depth, and  is the dimensionless 

distance beneath the sound channel axis. For this example the values of the constants are 

chosen as 1000 maxisz  , 1000 mB  , 0.0057  , 1500 m/soc  , and the maximum 

depth is 4500 m.  The resultant sound speed profile is depicted in Figure 11. 
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Figure 11.   Representative sound speed profile based on Munk’s canonical profile. 

If the source and receiver nodes are located at the axis of the sound speed profile, 

a straight non-refracted path between them exists.  When either source or receiver is not 

located at the sound channel axis, there is no straight line path between them.  This is 

graphically illustrated in Figure 12 using fifteen rays (note: if a ray strikes either the 

surface or the bottom, it is removed from the analysis).  Since the actual ray paths can be 

longer than the straight line path assumed by the Seaweb ranging estimation, the 

measured ranges tend to be overestimates of the actual ranges.  Using the constraints of 

this example, for a 5000 meter distance between nodes, the travel time difference could 

be as great as 0.1 second which equates to a range overestimate of 150 meters, which is 

an error of 3%. 

Sound Channel Axis 
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Figure 12.   Ray traces for source located at the sound channel axis (top) and above the 
sound channel axis (bottom). 

2. Reflected Paths 

 The previous discussion does not account for rays that interact with either the 

surface or the bottom, both of which occur in the real world.  Interactions with a 

boundary results in absorption and scattering that reduce the intensity of the sound 

energy.  For the surface, the amount of reduction depends on the roughness of the sea 

surface and the spectral frequency of the transmitted signal.  For a relatively smooth 

surface with wave heights of approximately 0.3 meters, and a transmitted signal of 25 

kHz, each reflection is estimated to cause a 3 dB loss [14].  At the operational frequencies 

of Seaweb (9-14 kHz) the estimated losses are less since the transmitted wavelengths are 
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larger relative to the wavelength of the sea surface [14].  Bottom reflection losses are 

more difficult to predict because of the large variations in bottom type and characteristics.  

Additionally, the grazing angle at which the sound strikes the bottom affects the amount 

of loss in each interaction. However it can be expected that the losses to the bottom are 

on the order of 8 dB per interaction [14].   

Seaweb takes advantage of these losses when determining the node-to-node 

ranges by using a peak-detector filter which allows the ranging algorithms to select the 

highest intensity multipath arrival.  Since the reflected rays will generally have reduced 

intensity due to interactions with the boundaries, they are ignored by the filter in favor of 

the direct path rays. 

B. GEOMETRIC ERRORS 

Some of the errors that can degrade the node-to-node range data are not a result of 

acoustics. Rather, these errors arise from the physical geometry of the network nodes. 

1. Depth Variance 

The sea floor can exaggerate the measured range.  Figure 13 depicts a situation 

where two nodes are located at different depths by virtue of the bathymetry contours.  

The green arrow is the horizontal range between the two nodes, and the depth difference 

is z.  By the Pythagorean Theorem the measured slant range is 

 2 2( )measured actualr r z   . (3.3)  

This results in measured ranges that are greater than horizontal ranges between the nodes. 
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Figure 13.   Range error caused by nodal depth differences. 

This difference between slant range and horizontal range is neglected by the 

algorithm, which analyzes for a 2-D solution where all nodes are assumed to be in the 

same horizontal plane.  This is done not only to simplify the algorithms used, but because 

the differences in the ranges are typically negligible, being less than 0.1% error in most 

cases. A 10% slope is required to produce even a 0.5% error in the measured range.  

Table 1 evaluates the range errors for a few geometries. 

Actual 
Range 

(m) 

Depth 
Difference

(m) 
% Slope

Measured 
Range 

(m) 
% Error 

5000 5 0.10% 5000.002 0.000% 
5000 10 0.20% 5000.01 0.000% 
5000 50 1.00% 5000.25 0.005% 
5000 100 2.00% 5001 0.020% 

2500 5 0.20% 2500.005 0.000% 
2500 10 0.40% 2500.02 0.001% 
2500 50 2.00% 2500.5 0.020% 
2500 100 4.00% 2501.999 0.080% 

500 5 1.00% 500.025 0.005% 
500 10 2.00% 500.1 0.020% 
500 50 10.00% 502.4938 0.499% 
500 100 20.00% 509.902 1.980% 

Table 1.   Summary of measured range errors based on depth differences. 

Slant Range 

Horizontal Range 
}

Sea Floor  

z 
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2. Watch Circles 

The ocean is a dynamic environment where currents and tides displace the 

transducers even when the moorings are stationary.  These rotations are commonly called 

watch circles and are well know to a mariner who has spent time at anchor.  Based on the 

schematic layout of a telesonar repeater node depicted in Figure 3, the transducer is 

approximately 3 meters off the bottom.  This results in very little variation in the 

maximum range difference between two nodes.  If both nodes leaned 30 degrees in 

opposite directions, the difference in range is only 3 meters.  The racom gateway buoy 

ranges are much more influenced by watch circles because of the longer moorings.  

Based on the diagram in Figure 2, the transducer could experience a watch circle of up to 

78 meters from the anchor point for a 30-degree offset from vertical.   

3. Geometric Dilution of Precision 

The last error considered arises from the relative bearings of the nodes in the 2-D 

plane and the resulting angles between the nodes.  Consider the case illustrated in Figure 

14 where the range error (r) is considered to be the same for each pair of nodes.  When 

the two reference nodes are located near each other (Figure 14 a), the triangularized 

position of the unknown node has a large uncertainty region referred to as geometric 

dilution of precision (GDOP).  As the reference nodes are moved further apart (Figure 14 

b) and the angle tr between them increases, the GDOP is reduced until it reaches a 

minimum when tr is 90 degrees.  Since the error is a function of the geometric bearings 

of the nodes, careful planning of the node locations can minimize GDOP. 
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Figure 14.   Geometric Dilution of Precision (from [15]). 

C.  EXPECTED ACCURACY 

While all of the range errors are present in every scenario, the magnitude of their 

contributions depends on the location, layout, and environmental conditions.  

Nevertheless, some generalizations can be made about the localization error budget.  The 

largest sources of error are the ray path assumption - which results in an overestimate of 

the range -  and the watch circle of the racom buoy - which can cause an overestimate or 

underestimate of the range.  The assumption that sound speed is co = 1500 m/s can result 

in significant range errors in either direction, and the effects of varying depth are 

typically small but tend to overestimate the range.  Qualitatively, the sum of all of these 

errors results in an overestimation of range.  

To get a feeling for the range error budget, consider a set of nodes that are 

actually 4,000 meters apart with a 2% slope between the nodes.  Additionally assume a 

sound-speed profile that results in an average sound velocity of 1480 m/s.  Since the 

racom buoy produces the largest watch circle errors, choose this as one of the two nodes.  

Summing all the range errors, the measured range would be reported as 4278.5 meters 

which is a 7% error.  A breakdown of the contribution of each error type is contained in 

Table 2. 
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Range 

Error (m)
% Error 

Sound 
Speed  

54 1.34 

Ray Path 120 3.00 

Depth 
Variance

1 0.02 

Watch 
Circle 

(racom) 
103 2.58 

Watch 
Circle 

(telesonar)
1.5 0.04 

Total Error 278.5 7 

Table 2.   Range Error Budget for two nodes 4000 meters apart with a 2% slope. 
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IV. LOCALIZATION METHODS 

The localization of nodes in a Seaweb network is based on the range-fixing 

concept of using intersecting circles centered on known locations.  For the purpose of this 

thesis, an ‘unknown’ node is one that has not yet been localized and a ‘known’ node is 

one that has been localized on the x-y plane either by a priori information, or by a range-

fixing algorithm.  Localization by intersecting circles works well when no node 

positional errors or range errors are present, but difficulties can arise when errors are 

introduced.  Previous work by [2] and [3] attempted to mitigate these errors by using 

weighted averages and center of mass method, respectively.  Both were tested in [4] and 

compared with the difference linearization method outlined by [16].  The difference 

linear method was found to be superior in estimating the position of unknown nodes.   

Depending on the number of range measurements between an unknown node and 

neighboring known nodes, three possibilities exist for the type of solution that can be 

found for the position of the unknown node.  These are one range, which results in no 

solutions, two ranges, which result in ambiguous solutions, and three or more ranges 

which result in an exact solution.  These cases are discussed in the following sections.   

Ranges from one unknown to other unknown nodes result in no additional useful 

information when attempting to localize the unknown node. 

A. NO SOLUTIONS 

If the unknown node has only one range to a known node, there are infinitely 

many possible locations for the unknown node.  The solution set is a circle centered at the 

location of the known node with a radius equal to the range from the known node to the 

unknown node.  For this reason, unknown nodes with only a single range are not 

evaluated and are passed over until the algorithm has localized a second node for which 

the unknown node has a range, resulting in the case described in the next section. 
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B. AMBIGUOUS SOLUTIONS 

When the unknown node has ranges to two neighboring known nodes, there are 

two ambiguous solutions that exist where the two range circles intersect.  One will be 

above a line that intersects the two known nodes, and the other is a reflection below the 

line.  This is depicted in Figure 15.   

 

Figure 15.   Two-node, two-range solution set (after [3]). 

Determination of the locations of the two ambiguous solutions is made using the 

law of cosines.  Figure 16 demonstrates the locations of the two known nodes, i and j, and 

the two red triangles symbolize the unknown node’s ambiguous solutions.  The node-to-

node ranges from the known nodes to the ambiguous solutions are represented by ri and 

rj, and rij is the range along the axis of reflection between the two known nodes.  The 

angle from the axis of reflection to the bearing of the unknown node is determined using 

the law of cosines  

 
2 2 2

1cos
2

i ij j

i ij

r r r

r r
 

  
   

 
. (4.1) 

The bearing to the ambiguous solution is simply the negative of that angle.  Once   is 

determined, the x and y coordinates of the unknown node are given by 

Ambiguous 
Solutions 

Known Node 
Locations 

Range 
Circles 

Axis of 
Reflection 
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sin
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x r

y r







  . (4.2) 

From Figure 15 it is noted that the x coordinates are the same for both ambiguous 

solutions and the y coordinates are reflections about the x-axis. 

 

Figure 16.   Law of cosines used to determine the angle  to the unknown node location 
from node i, a known node (from [2]). 

C. DIFFERENCE LINEARIZATION METHOD 

When an unknown node has ranges to three known nodes, a single unambiguous 

solution to the location of the unknown node exists where the three range circles 

intersect, as seen in Figure 17.  This trilateration is the basis for radar navigation and the 

Global Positioning System.   
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Figure 17.   Three-node, three-range solution (after [3]). 

The difference linearization method is based on the fact that in an n-dimensional 

coordinate system, the location of an object can be found if ranges are known to n+1 

fixed locations.  In a 2-D system, the distance ri between the ith point at a known position 

and the object located at (x, y) is given by the Pythagorean theorem: 

2 2 2)( ( )i i ir x x y y    .  Since this is a 2-D system, the distances to three known 

locations may be written as a system of equations of the form 

 

2 2 2
1 1 1

3

2 2 2
2 2 2

2 2 2
33

( ) ( )

 ( ) ( )

( ) ( )

r x x y y

r x x y y

r x x y y

     
   

      
        

. (4.3) 

The difference linearization method described in [16] is applied to this system of 

equations.  This method first eliminates the square terms and reforms the equality so that 

it is the sum of a pair of simultaneous equations in x and y, 
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 

   
. (4.4) 

Solving for the location of the object (x, y) results in 
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It is possible for an unknown node to have ranges to more than three known nodes 

causing Equation (4.3) to be over-determined.  Two possibilities then exist for estimating 

the location of the node.  Either the over-determined system of equations can be solved 

simultaneously using a least-squares procedure, or the ranges can be selected in 

combinations of three and the position estimated as a weighted average.  When the range 

data contains errors, the latter method was found to be superior by [4] due to its ability to 

successfully mitigate range errors.  For this reason using combinations of ranges and 

averaging the solutions is implemented in this thesis. 
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V. ALGORITHM IMPLEMENTATION 

The algorithm developed in this thesis is implemented in the MATLAB 

programming language and consists of four basic stages: operator input, data input, 

removal of outliers from the data, and determining the locations of the nodes.  Each stage 

is written as a separate function that is called by a master program.  The MATLAB code 

is listed in Appendix A. 

A. OPERATOR INPUT 

The first stage requires the operator to provide the parameters associated with the 

Seaweb network to be analyzed.  The operator identifies the address of each node in the 

network, and specifies the ‘master’ node and the ‘on_X’ node.  The ‘master’ node is 

usually the gateway buoy that supports interface between the underwater network and the 

operator.  A useful attribute of the gateway buoy is its on-board GPS receiver.  The 

‘on_X’ node is the only other node in the network that must be specially designated.  It 

must be close enough to the ‘master’ node to ensure that a range measurement is 

available and the operator must be able to specify what the true bearing is from the 

‘master’ node to the ‘on_X’ node.  This permits the operator to orient the solution 

produced by the algorithm to a geo-referenced coordinate system, such as latitude-

longitude.   

The next thing the operator specifies are the names of the text files that contain 

the node-to-node range data.  The format of the text data files is shown in Table 3, below. 
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3 30 75.1 10 120.6 20 294.3 11 412.8 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

20 11 170.8 10 182.0 30 237.3 3 300.1 

30 10 70.6 3 78.5 20 235.4 11 396.6 

Table 3.   Example of the node-to-node range data format used by the algorithm.  The red 
column is the node address that initiated the communication, the blue column is 
the node address that responded, and the black column is the calculated range 

between the two nodes in meters.  Zeros indicate that the initiating node did not 
receive a response. 

B. STACK BUILD 

The Stack_Build.m function takes the input data and sorts it into a single 3-D 

matrix, referred to as a range stack, in a form suited for analysis.  The range stack 

consists of the same number of layers as the number of files loaded by the operator.  Each 

layer is a square matrix where the node addresses comprise the first row and first column 

of the matrix and serve as headers for indexing the range data.  For convenience, the 

‘master’ node is assigned to the second row/column and the ‘on_X’ node is assigned to 

the third row/column. 

Each node-to-node range data file is loaded and its contents are organized as a 

layer in the stack with each range datum stored in the row of the node that initiated the 

communication and in the column of the corresponding node.  Once a layer is completed, 

it is placed on the stack and the next data file is loaded.  A graphical representation of the 

range stack appears in Figure 18, below. 
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Figure 18.   The range stack is constructed from data files. 

C. STACK SIFT 

The range stack is passed to the function Stack_Sift.m, where it is distilled to 

determine the mean range between each pair of nodes.  Each node pair is statistically 

evaluated and the resulting mean ranges are stored in a single 2-D array.  

The first step is for all the ranges for a particular node pair to be loaded into a 

single vector.  This is done by “looking down the stack” for the particular node pair for 

all the range measurements made during the discovery process (e.g., node 3 to node 7).  

Simultaneously the reciprocal combination is found by looking “up the stack” (e.g., node 

7 to 3).  This process is depicted in Figure 19.   
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Figure 19.   Example of building the vector of range data for a node pair. 

The vector is statistically analyzed in an iterative manner to derive a good range 

between the selected nodes by progressively eliminating outlier ranges that fall outside a 

ten percent confidence interval for the data.  Initially the mean and ten-percent 

confidence interval of the data ranges are calculated and data that fall outside the 

confidence interval are flagged.  The flagged datum falling furthest from the mean is 

eliminated.  The mean and confidence interval are then recalculated and the process is 

repeated until no data fall outside the confidence interval.  The final calculated range 

estimate for the node pair is then stored in the appropriate element of the 2-D array. Once 

all node pairs have been analyzed, the resulting output is a 2-D square array that is 

symmetric about the main diagonal, with node pairs that lack a range estimate denoted by 

‘NaN’ (“Not a Number”). 
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NaN 
'master' 
Node 

'on_X' 
Node 

Node 3 Node 4

'master' 
Node 

NaN 
Range: 
m -> X

Range: 
m -> 3

Range: 
m -> 4

'on_X' 
Node 

Range: 
m -> X

NaN 
Range: 
X -> 3 

Range: 
X -> 4 

Node 3 
Range: 
m -> 3

Range: 
X -> 3 

NaN 
Range: 
3 -> 4 

Node 4 
Range: 
m -> 4

Range: 
X -> 4 

Range: 
3 -> 4 

NaN 

Table 4.   Example output range array from Stack_Sift.m. 

D. SOLVER 

Now that the range data are filtered, averaged, and organized, the Solver.m 

function estimates the locations of the nodes.  The first step is to establish a frame of 

reference based on the known locations of ‘master’ and ‘on_X’ nodes.  The master node 

location is set to be at the origin (0,0) of a horizontal Cartesian grid.  The positive x-axis 

is forced to intersect the location of the ‘on_X’ node, such that the coordinate of this node 

is ( ,0)master on Xr   .     

Once a node is localized within the grid, it is considered to be a known node.  

With these known nodes in place, the algorithm evaluates each remaining node to 

determine how many ranges it has to known nodes in the grid.  Three distinct possibilities 

exist: one range, two ranges, or three or more ranges.  If only one range exists to a known 

node no attempt is made to localize that node since the solution set is a circle centered at 

the known node’s location with a radius equal to the range.   

If a node has ranges to only two other known nodes, there are two ambiguous 

solutions to the location of that node.  Since no solutions can be eliminated without 

knowing some geographical constraints, all possible solutions are tracked.  This means 

that there are potentially (# of nodes 2)2   different possible solutions that must be stored.  To 

account for all these possibilities, a binary system is employed that tracks each time a 

node has ranges to only two nodes.  For example, in a five-node network there are eight 
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possible solutions.  The first two nodes, the ‘master’ and ‘on_X’ nodes are in fixed 

locations, and the third node has ambiguous solutions that are labeled 00000 and 00100 

respectively.  If the fourth node also has only two ranges to nodes with known locations, 

there are four possible solutions: 00000, 00100, 00010, and 00110.  (These solutions are 

alternately identified by their base-ten values 0, 4, 2, and 3).  When a previously 

unknown node becomes known, the program also sets a flag to cause it to cycle through 

all the nodes again since a node that had previously been bypassed may now have 

sufficient ranges to known nodes to make its localization possible. 

When a node has ranges to three known nodes, the program then finds a single 

solution using Equation (4.5).  If this is the first time a solution has been determined for 

this node, the program sets the flag to cause the program to loop through all nodes again 

and also has that node evaluated in all possible ambiguous solution sets.  If it not the 

node’s first solution, the location determined by this particular iteration of the algorithm 

is checked against the previous solution.  If either the x-coordinate or the y-coordinate are 

greater than some range difference threshold from the previous solution, the new solution 

is considered improved and the program sets the flag to have every node in every 

ambiguous solution set evaluated again. 

This process continues until the all nodes have been located within the specified 

tolerances of the previous solutions.  The output of the program is a list of all the 

ambiguous solutions, i.e., 00000, 00100, 00110, etc…, as well the locations of each node 

for each ambiguous solution set.     

E.  EXAMPLE OF A FIVE-NODE LAYOUT 

This section provides an example of the algorithm process for a simple five-node 

layout for illustration purposes.  The nodes are generated randomly on a 5000-meter by 

5000-meter grid, the ‘master’ node is node 4, and the ‘on_X’ node is node 2.  The true 

node locations and the actual node-to-node ranges are given in Table 5.  These true node 

locations are plotted in Figure 20.  Figure 21 is a plot of the same five nodes with the 

frame of reference translated such that the origin is at the ‘master’ node and the positive 

x-axis intersects the ‘on_X’ node. 
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Node Locations (meters)  Node-to-Node Ranges (meters) 

Node x-position y-position  NaN 1 2 3 4 5 

4 1393 2735  1 NaN 3439 4143 3226 773 

2 635 4567  2 3439 NaN 4798 1983 4161 

3 3162 488  3 4143 4798 NaN 2860 4632 

1 4074 4529  4 3226 1983 2860 NaN 3987 

5 4788 4825  5 773 4161 4632 3987 NaN 

Table 5.   Example node locations and ranges. 

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

12

3

4

5

Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

 

Figure 20.   Locations of example nodes. 



 36

-3000 -2000 -1000 0 1000 2000
-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

4 2

3

1

5

Rotated Actual Node Locations

x-axis (m)

y-
ax

is
 (

m
)

 

Figure 21.   Example nodes rotated and translated to place ‘master’ at origin and ‘on_X’ 
on the positive x-axis. 

 

For realism, associated with limitations of acoustic communications, ranges in 

excess of 4000 meters are removed, resulting in the range matrix shown in Table 6. This 

is input into the Solver.m function. 

Node-to-Node Ranges 
NaN 4 2 3 1 5 

4 NaN 1983 2860 3226 3987 
2 1983 NaN NaN 3439 NaN 
3 2860 NaN NaN NaN NaN 
1 3226 3439 NaN NaN 773 
5 3987 NaN NaN 773 NaN 

Table 6.   Node-to-node range matrix after 4000-meter maximum range cutoff is applied. 

Solver.m produces the following ambiguous solutions: 0, 1, 2, and 3, all of which 

are depicted in Figure 22.  Comparing these solutions to Figure 21, it is apparent that 
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ambiguous solutions 0 and 1 are on the wrong half-plane based on nodes 1 and 5 being 

below the x-axis in Figure 21 and nodes 1 and 5 being above the x-axis in solutions 0 and 

1.  Solution 2 is eliminated due to nodes 1 and 5 being in nearly a straight vertical line in 

Figure 21, while solution 2 has these nodes canted.  Thus, solution 3 is the most accurate 

solution.  Also of note is that node 3 is not featured in any solution set because it has only 

a single range to other nodes after the 4000-meter range cutoff is applied.   
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Figure 22.   Plotted results of all ambiguous solutions of example nodes.  
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VI. SYNTHETIC DATA ANALYSIS 

Synthetic data for testing the algorithm are created in MATLAB using the built-in 

random number generator functions.  For the node locations, the function unidrnd 

gives a uniformly distributed random number for both the x position and the y position.  

Error-free ranges are calculated for the node pairs.  Simulated range error is introduced 

by multiplying the error-free range by a normal distribution, and then adding five percent 

of the actual range multiplied by a chi-squared distribution, 

 2( , ) 0.05 ( )reported actual actualr Normdist r r       . (6.1) 

The normal distribution introduces some variability to the reported ranges to account for 

sound speed assumption errors which tend to be small and proportional to the range 

between the nodes.  The mean,  is set to one, and the standard deviation,  is 0.1 to 

ensure that most reported ranges will be near the actual range.  The chi-squared 

distribution is chosen as the model for the additive factor to account for refracted ray path 

errors and depth variance errors which tend to be larger, but also proportional to the range 

between the nodes.  The parameter  is set to one for this evaluation, resulting in an 

expected value of one, with a standard deviation of two.  When this is multiplied by 5% 

of the error-free range, it results in an approximate 5% overestimation of the range.  This 

method typically yields a reported range greater than the actual range.  This reflects the 

fact that most range errors result in an overestimation of the range as established in the 

error analysis performed in Chapter III.  Watch circle errors are not addressed since they 

normally only affect the racom node and will typically average out over the course of a 

network’s operations.  

For analysis of the algorithm performance, fifteen nodes are randomly placed in 

an eight-kilometer by six-kilometer region, since this is the approximate area of the St. 

Margaret’s Bay sea trial.  For each simulation, the node-to-node range calculations are 

performed fifty times with different realizations of the range errors.  Each set of ranges is 

entered as a separate layer in the range stack.  To match realistic acoustic communication 

range limitations, ranges exceeding 4000 meters are omitted.  For consistency across all 
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simulations, node 1 is set as the ‘master’ node and node 2 is set as the ‘on_X’ node.   The 

algorithm is allowed an arbitrary maximum of 50 iterations to achieve convergence of the 

node coordinates.  For the simulation cases considered in this thesis, 50 iterations is 

sufficient for convergence of the node positions.  Increasing the number of allowed 

iterations was found to not significantly increase the accuracy of the solutions. 

 A. OUTLIER RANGE REJECTION 

Simulation testing confirms that the Stack_Sift.m program rejects ranges that fall 

outside the confidence interval and estimates a good range between nodes.  For the 

analysis in this section, the 4000-meter range cutoff is removed to maximize the number 

of ranges evaluated in each pass.  The analysis is performed for 100 realizations of the 

fifteen-node network, resulting in 19,600 ranges being evaluated.  The percent error 

between the actual ranges and the ranges with offsets is recorded, and then the ranges are 

analyzed by the Stack_Sift.m function.  The percent error between the output of the 

function and the actual ranges are then computed.   

The mean percent range error for the ranges not run through Stack_Sift.m is 4.7%, 

and the largest percent error is 5.0%.  After the ranges are processed by Stack_Sift.m, the 

mean error is reduced to 3.7%, and the single largest error is 4.3%.  This filtering gains 

over a 1% increase in the accuracy of the range data, which is substantial when localizing 

nodes.  In absolute terms, the accuracy of a 4000-meter range estimate is improved by 40 

m.  The results are summarized in Table 7. 

  Mean % Error Max % Error Min %Error 

Pre 
Stack_Sift.m 

4.7% 5.0% 4.3% 

Post 
Stack_Sift.m 

3.7% 4.3% 3.0% 

Table 7.   Percent Error improvement gained by Stack_Sift.m. 

B. ERROR-FREE RANGES 

Error-free testing is performed to verify the ability of the algorithm to correctly 

determine the positions of all nodes with perfect range data.  Several statistics are 
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computed for each network realization.  The number of iterations required by the 

algorithm to position all nodes within 25 meters accuracy is recorded because this is 

indicative of the processing time required.  The program also tracks how many of the 

fifteen nodes have been localized to ascertain how many of the nodes are beyond the 

maximum cutoff range to more than one node.  Thirdly, the algorithm counts the total 

number of ambiguous solutions caused by an unknown node having ranges to just two 

known nodes.  This count is important because it indicates how many ambiguous 

solutions the operator must evaluate for redundant or impossible solutions, such as those 

that result in a node being located on land when translated to a navigation chart.  Lastly, 

the true positions of all the nodes are translated and rotated to place the ‘master’ node at 

the origin and the ‘on_X’ node on the x-axis.  The positions of each node in each 

ambiguous solution are then compared to these true positions, and the ambiguous 

solution that has the lowest total range error is recorded.  This total error is divided by the 

number of nodes that were localized for that particular node set, to give the mean error 

per node for that set. 

One-hundred realizations are simulated to yield an adequate sample size.  In four 

of these 100 sets, the algorithm is unable to determine the location of a third node due to 

no nodes being within the maximum cutoff range (4000 meters) of both the ‘master’ node 

and ‘on_X’ node.  These four realizations are excluded from analysis since they would 

skew the statistics of interest. 

The first statistics analyzed are how many of the fifteen nodes are able to be 

localized and how many iterations of the program are required to converge all nodes to 

within 25 meters of its previous solution.  The mean number of nodes localized is 14.8 of 

the possible 15.  The mean number of iterations is 19.1, but this result is bi-modally 

skewed by the large number of times the program required less than five iterations and 

the number of times it required all 50 allowed iterations.  More indicative statistics are 

the median number of iterations (6.5) and the mode (3).  Figures 23 and 24 provide 

histograms of the results as well as the statistical values of interest. 
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Figure 23.   Total number of nodes localized for 100 realizations of 15-node networks in 
an 8-km by 6-km area, using error-free ranges. 
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Figure 24.   Total number of iterations for 100 realizations of 15-node networks in an 8-
km by 6-km area, using error-free ranges. 

The number of ambiguous solutions is also evaluated.  The mean number of 

ambiguous solutions is 11.1, and the maximum is 64.  For a fifteen-node network the 

minimum number of solutions is 2, with a theoretical maximum of 8192 solutions.  The 

results are summarized in Figures 25. 
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 15 
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Figure 25.   Total number of ambiguous solutions for 100 realizations of 15-node 
networks in an 8-km by 6-km area, using error-free ranges. 

The most telling statistic is how well the algorithm is able to localize the nodes 

when compared to the actual positions.  This is done by finding the mean error for each 

node for a particular solution set.  The mean nodal localization error is 5.8 meters with a 

maximum of 242 meters.  The minimum, mode and median of the localization errors are 

all less than one.  Figure 26 presents the data as a histogram.  It is unclear at this point 

why range errors are incurred when the known ranges between nodes are exact.  It is 

presumed that the maximum number of allowed iterations and acceptance criteria for the 

algorithm to not flag an ambiguous solution for another iteration play major roles. 

 

Mean 
 11.1 
Minimum 
 2 
Maximum 
 64 
Median 
 8 
Mode 
 8 
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Figure 26.   Mean localization error for 100 realizations of 15-node networks in an 8-km 
by 6-km area, using error-free ranges. 

C. ERROR-INDUCED RANGES 

The same analyses that are performed on the error-free realizations are repeated 

for ranges that include errors introduced with Equation (6.1).  The results of the algorithm 

show that in 35 of the node sets no solutions are achieved due to no nodes being within 

the maximum cutoff range of both the ‘master’ and ‘on_X’ nodes.  The greater number of 

node sets that the algorithm was unable to localize is partly due to the fact that the range 

errors introduced resulted in a greater number of nodes that had ranges above the 4000-

meter cutoff to the ‘master’ and ‘on_X’ nodes. 

As expected, the performance is poorer than in the error-free cases.  The mean 

number of nodes localized declines to 8.9 nodes per set.  Also the number of iterations 

required increases to nearly the maximum in almost every simulation, rising to a mean of 

47.5 passes.  The data are presented in Figures 27 and 28.   

Mean 
 5.8 m 
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 < 1 m 
Maximum 
 242 m 
Median 
 < 1 m 
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Figure 27.   Total number of nodes localized for 100 realizations of 15-node networks in 
an 8-km by 6-km area, with range errors. 
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Figure 28.   Total number of iterations for 100 realizations of 15-node networks in an 8-
km by 6-km area, with range errors. 

The number of ambiguous solutions also increases over the error-free case.  The 

mean number of ambiguous solutions increases to 226.2 with a maximum of 4096 

ambiguous solutions.  Figures 29 shows these results. 
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Figure 29.   Total number of ambiguous solutions for 100 realizations of 15-node 
networks in an 8-km by 6-km area, with range errors. 

Obviously, the mean best localization per node also increases.  The mean value is 

511 meters with a maximum of 3811.7 meters.  However the median is 312 meters, 

meaning that the localization error tends to be less than a quarter of a nautical mile.   

Figure 30 summarizes the results. 
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Figure 30.   Mean localization error for 100 realizations of 15-node networks in an 8-km 
by 6-km area, with range errors. 
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VII. ST. MARGARET’S BAY EXPERIMENT  

In June of 2008, Naval Postgraduate School conducted a test of the firmware 

upgrade of the ad hoc discovery scheme developed in [1] at St. Margaret’s Bay, Halifax, 

Nova Scotia, Canada as part of the 2008 TTCP Unet sea trials.  

A. SETUP 

 Nineteen nodes were deployed in this experiment, including a single racom buoy 

that served as the master node and which was located near the center of the Seaweb 

network.  Figure 31 shows the physical components of the Seaweb network.  Table 8 

tabulates the recorded deployment location of each node as determined by GPS fixes.  

Figure 4 shows a chart of St. Margaret’s Bay and the location of each node. 

 The water where the nodes were deployed varies from 30 to 70 meters deep, with 

the bottom type characterized as sand or gravel.  Wind speed was typically less than 8m/s 

as observed at CFAV Quest, and shipping traffic was observed to be light. 

Seaweb server 
(onboard CFAV Quest)

Racom gateway buoy 

Seaweb node
(comprising weight, acoustic release, 
telesonar modem, and float)

RF, cellular, 
and SATCOM link

Acoustic link

Seaweb server 
(onboard CFAV Quest)

Racom gateway buoy 

Seaweb node
(comprising weight, acoustic release, 
telesonar modem, and float)

RF, cellular, 
and SATCOM link

Acoustic link

 

Figure 31.   Seaweb network components: Seaweb server, racom gateway buoy, and 
Seaweb repeater node (after [1]). 
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Node ID Position (dd o mm.mmm) Node ID Position (dd o mm.mmm) 
3 44 o 35.609N 63 o 59.712W 43 44 o 36.713N 63 o 58.396W 

16 44 o 35.400N 63 o 59.500W 44 44 o 37.072N 63 o 58.393W 
19 44 o 35.279N 64 o 00.633W 45 44 o 37.347N 63 o 58.483W 
20 44 o 35.870N 63 o 59.810W 46 44 o 35.639N 63 o 59.253W 
21 44 o 36.350N 63 o 59.900W 48 44 o 34.302N 63 o 59.727W 
22 44 o 36.850N 63 o 59.860W 50 44 o 35.747N 64 o 00.316W 
23 44 o 37.340N 63 o 59.710W 51 44 o 36.468N 64 o 00.629W 
24 44 o 37.810N 63 o 59.440W 52 44 o 37.097N 64 o 00.689W 
41 44 o 35.790N 63 o 58.580W 53 44 o 37.694N 64 o 00.904W 
42 44 o 36.270N 63 o 58.170W   

Table 8.   GPS coordinates of 19 nodes involved in June 2008 Seaweb ad hoc network 
discovery experiment. 

B. ACOUSTIC ENVIRONMENT 

Seaweb communications between the acoustic modems occur in the 9-14 kHz 

frequency band.  Environmental observations during the sea trial, permit analysis of the 

communication channel during the experiment.  

1.  Transmission Loss  

As sound energy propagates away from the source, its intensity decreases due to 

geometric spreading and attenuation.  Geometric spreading is frequency independent and 

is best described as wavefront expansion as the sound travels away from the source.  

Initially the expansion begins as spherical spreading with intensity decreasing as a 

function of the range from the source squared.  As the wavefront begins to interact with 

the seafloor and surface, and the water medium begins to act as a duct, the spreading 

shifts to a cylindrical model where the intensity decreases in proportion to the range from 

the source [14].   

In addition to geometric spreading, sound energy is also absorbed as it travels 

through a medium.  The attenuation is due to the conversion of the sound energy into 

heat, and the rate at which this conversion takes place is frequency-dependent.  As 

frequency increases, the rate at which the sound is attenuated increases.  Based on work 

by Francois and Garrison in [17 and 18], the expected rate at which sound attenuation 
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occurs in the ocean at Seaweb frequencies is approximately 1 dB/km.  Figure 32 shows 

the operating frequencies of Seaweb and the corresponding attenuation coefficient. 

 

Figure 32.   Attenuation coefficient   in dB/km versus transmission frequency in kHz, 
based on Francois and Garrison [17 and 18] for salinity S = 35 ppt, acidity pH = 8, 

and depth D = 50 m. 

2. Noise Level 

The background noise levels in the ocean have several major constituents that 

each contribute differently depending on the frequency of interest.  At very low 

frequencies, below 20 Hz, the noise is dominated by tidal and wave noise.  From 20 Hz to 

500 Hz, man-made shipping noise is the main contributor.  At 500 Hz, wind noise is 

dominant until approximately 100 kHz, when thermal noise dictates the background noise 

levels [14].  Thus, at the Seaweb operating frequencies, wind-driven noise is the main 

component of the background noise.  This is seen in Figure 33 derived from Coates [19].   
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Figure 33.   Noise spectrum level based on empirical formula by Coates (after [19]).  
NLwind is for 5 m/s (10 kts) wind speeds. 

Since wind-driven noise is the limiting component of the total background noise 

in the frequency range of interest for Seaweb, and the wind noise is dependent on the 

wind speed, Coates’ formulas can be expounded upon to give Figure 34.  This figure 

demonstrates the variation in noise level with wind speed.  From the figure it is estimated 

that 50 dB re 1 Pa ambient noise existed at the operating frequencies of Seaweb for the 

wind speeds observed during the trial. 
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Figure 34.   Effect of surface wind speed on noise spectrum level based on empirical 
formulae by Coates (after [19]). 

3. Multipath Propagation  

As discussed in Chapter III, the shape of the vertical sound speed profile dictates 

the path that sound travels from the source.  Figure 35 shows the sound-speed profiles 

taken at the outset and prior to the conclusion of the trial near the gateway node.  The 

average sound-speed profile is analyzed using code from Torres [20] that determines the 

channel impulse response based on eigenray traces employing a Bellhop Gaussian beam-

tracing propagation model.  Figure 36 shows the results for nodes at 55 meters in depth at 

a frequency of 12 kHz, in 57 meters of total water depth.  These figures demonstrate that 

the direct-path arrivals are greater in amplitude than any multipath, and therefore the 

matched filter used by Seaweb to measure node-to-node ranges should be effective at 

determining the direct-path arrivals. 
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Figure 35.   Sound-speed profiles from St. Margaret’s Bay. 
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Figure 36.   Bellhop eigenray traces for June 2008 St. Margaret’s Bay trial show a 
downward-refracting channel with multipath propagation.  Direct-path arrivals are 

in red. Left: 1 km spacing. Right: 4 km spacing.   Note the time-scale and 
amplitude-scale changes on the channel impulse response plots. 
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C. DATA 

The Seaweb experiments of interest in St. Margaret’s Bay were conducted June 

23 thru June 25, 2008.  During this time the ad hoc discovery method of Ong [1] was 

exercised on five separate occasions.  The node-to-node range measurements were saved 

into separate files for each discovery process, and all of these files were input into the 

localization algorithm for analysis.  Node 3 was the racom buoy and master node.  For 

the analysis, node 20 was selected as the ‘on_X’ node for its proximity to the master node 

and due to it having a large number of neighboring nodes.  Figure 37 plots the node 

locations as determined by GPS at the time of deployment relative to the ‘master’ node.  

This figure corresponds to Figure 4, which shows the charted positions of the nodes.  

Figure 38 plots the same node locations with the axes rotated such that ‘on_X’ node lies 

on the x-axis. 
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Figure 37.   Locations of St. Margaret’s Bay nodes referenced to node 3. 
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Figure 38.   St. Margaret’s Bay network rotated with node 3 as the ‘master’ node and node 
20 as the ‘on_X’ node. 

D. RESULTS 

Using the range data from the five ad hoc discoveries, the algorithm converges the 

node locations to within 25 meters in six iterations.  The algorithm produces 16 

ambiguous solutions.  The ambiguous solution that is closest to the actual node positions 

is solution 71936, which has a mean nodal position error of 80.8 meters.  Figure 39 plots 

the locations of this solution.  Appendix B contains plots for all of the ambiguous 

solutions that are generated.   

Additionally an analysis for redundancy is conducted.  Using a 25-meter threshold 

between each node location to call an ambiguous solution redundant, two of the solutions 

are declared redundant.  Namely, ambiguous solution 4096 is redundant to solution 2048 

and solution 67480 is redundant to solution 71936, which is the solution with the smallest 

mean nodal localization error. 
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Figure 39.   Ambiguous solution exhibiting the smallest mean error per node (80.8 m) 
compared with the recorded node locations. 
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VIII. HORTEN EXPERIMENT 

A second experiment was conducted off the coast of Horten, Norway in 

September 2008, but on a smaller scale with fewer nodes and a smaller area.  The 

network deployment area, as seen in Figure 40, was approximately 500 meters by 600 

meters and includes nine nodes.  Due to the shallow bathymetry and sound speed profile 

that resulted in most of the sound energy being refracted to the boundaries during the 

trial, the maximum acoustic range was limited to less than 1500 meters.  During the 

experiment, 32 ad hoc discoveries were conducted over the course of six days.  Node 3 

was the racom buoy and ‘master’ node, and node 10 is selected as the ‘on_X’ node for 

analysis. 

 

Figure 40.   Horten Seaweb network layout (from [1]). 



 58

The algorithm yields two ambiguous solutions, the better of which has a mean 

node localization error of 35.7 meters and requires three iterations for the solutions to 

converge.  Figure 41 displays the node locations translated such that node 3 is the origin 

and node 10 is on the x-axis.  Figure 42 shows the two ambiguous solutions, of which 

ambiguous solution 0 is the more accurate one.  A visual comparison of solution 0 to the 

rotated actual node locations reveals that the solution for node 21 is farther away from the 

‘master’ node than the actual location.  This follows the general assumption from Chapter 

III, that the measured ranges will typically exceed the actual ranges, and that these errors 

compound as the distance from the master node increases. 
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Figure 41.   Horten experiment nodes rotated with node 3 as the ‘master’ node and node 
10 as the ‘on_X’ node. 
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Figure 42.   Ambiguous solutions of the Norway sea trial data. 
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IX. CONCLUSIONS 

A. SUMMARY OF RESULTS 

The Seaweb ad hoc discovery process provides node-to-node range measurements 

that can be used to localize the positions of the network nodes.  The results from the 

synthetic data and experimental data demonstrate that the algorithm implemented in this 

thesis is capable of localizing the nodes of a Seaweb network.  This is especially 

important for sensor nodes, for which geo-localization is vital to operationally exploit the 

sensor data gathered. 

B. RECOMMENDATION 

In view of the fact that the algorithm is capable of localizing nodes, it should be 

added to the Seaweb field kit.   It should be further refined and tested, with the eventual 

goal of incorporating it into the master node for automated operations. 

C. FURTHER RESEARCH 

The opportunities for further research stemming from this thesis fall into two 

broad categories, improving the algorithm to make it more accurate and efficient and 

having the algorithm interact with the Seaweb network to provide better data input by 

using system feedback.   

1. Pruning Ambiguous Solutions 

An improvement would be for the algorithm to selectively determine which 

unknown node should be evaluated first after the ‘master’ and ‘on_X’ nodes have been 

localized.  The candidates for the third node would require ranges to both the ‘master’ 

and ‘on_X’ nodes.  The recommended criteria for selecting the best third node from those 

that qualify would be the node that has the most ranges to other nodes also having ranges  
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to the ‘master’ and ‘on_X’ nodes.  The benefit would be that secondary nodes chosen in 

this manner would not have ambiguous solutions.  This would reduce the total number of 

ambiguous solutions. 

Another improvement that would reduce the number of ambiguous solutions is to 

incorporate operator-provided constraints on the network geometry, such as boundaries, 

shorelines and known node locations.  These constraints could be used to test 

hypothetical solutions.   

2. System Feedback 

When the algorithm processes the range data, it is unable to localize any node that 

has only a single range to known node.  To proactively localize these single-range nodes, 

the algorithm could request of the Seaweb operator that these nodes issue another 

broadcast ping in an attempt to measure a range to a second known node.  The new 

broadcast ping could be at a higher power level to attempt to overcome background 

noise, or the system could wait some time interval to allow noise levels and propagation 

conditions to improve.  This same principle could also be applied to nodes having 

ambiguous solutions.  If a third range is found to a known node, the solution becomes 

exact and eliminates the ambiguity. 

The use of a mobile node, such as a UUV or simply a repeater node hung over the 

side of a ship, provides many avenues for augmenting the range data which are delivered 

to the algorithm.  Assuming the mobile node is capable of determining its own location 

via GPS, it is an ideal choice as the ‘on_X’ node, because all of the nodes could be geo-

localized once the algorithm was complete.  The mobile node could also be used to 

eliminate ambiguous solutions by positioning itself as a known node such that a third 

range would be available for otherwise ambiguous node solutions.  For nodes that have 

only a single range to a known node, the mobile node could provide ranges from multiple 

stations.  The mobile node could also search for nodes that were deployed but not 

discovered.  To accomplish this, the mobile node could transit to areas where the 

localization failed to show a node and conduct broadcast pings. 
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The program Stack_Sift.m could also be modified to detect the migration of nodes 

over time.  Nodes could potentially be moved by bottom-trawling fishermen which would 

alter the node layout.  If the Stack_Sift.m function noted a persistent change in the ranges 

between nodes, it could either request a complete repeat of the ad hoc discovery process 

to reset all of the ranges for every node, or it could begin to use the new ranges and 

disregard the old ones. 
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APPENDIX A:  ALGORITHM 

Gen_Solver.m 

function [b,c,d,e] = Gen_Solver (source) 
%LT Dave Zinkhon    22 Sep 08 
    %Main Program 
    % 02 Oct 08 - Revised to match Soultion_Type_2 using node and range 
                % data to determine solution  type to use, and 
eliminated  
                % the know_third portion 
    % 08 Oct 08 - Revised to allow for storage of any possible mirror 
solutions 
                % that could be encountered 
                 
                % Split local_positions into 2 matrixes that could hold 
                % 2^(num_nodes-2) possibilities (maximum possible 
number of 
                % mirrors) 
                 
                % Moved master and on_X nodes to top of all matrixes by 
                % calling function Reorder 
                 
    % 15 Oct 08 - started using active_branches to identify which 
splits were 
                % being used (identified by decimal number) 
    % 18 Feb 08 - revamped to analyze Generated nodes 
                 
%clear all 
%clc 
%close all 
     
global X_positions; 
global Y_positions; 
global ranges; 
global num_of_nodes; 
global master_branch; 
global active_branches; 
  
ranges = source; 
  
%seeds active_branches with first branch (0) 
active_branches = 0; 
  
  
%determine number of nodes for loop control 
num_of_nodes = length (ranges(1,:))-1; 
  
%create array for storage of positions in local reference frame 
    %1st column is node number, each column is then possibility for 
mirror 
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X_positions = zeros (num_of_nodes+1 , 2^(num_of_nodes-2)+1);    
  
for i = 1:num_of_nodes 
    X_positions (i+1,1) = ranges (i+1,1); 
end 
  
%fills in unknown data and column headers with NaN's 
for i = 2:length(X_positions(1,:)) 
    X_positions (:,i) = NaN;     
end 
X_positions(1,1) = NaN; 
  
%Y_position matrix is identical in setup to X_positions 
Y_positions = X_positions;    
      
%this is used to track which branches are currently being used and 
which 
    %branches even exist 
master_branch = zeros (num_of_nodes+1, 2); 
master_branch(:,1) = X_positions(:,1); 
master_branch(1,2) = NaN; 
  
%set master node to origin and on_X position to range from master to 
on_X 
    %master 
X_positions (2,2) = 0; 
Y_positions (2,2) = 0; 
    %on_X 
X_positions (3,2) = ranges (3,2); 
Y_positions (3,2) = 0; 
      
  
%change_local used to keep program running if the has been a new node 
    %solved in the local positions matrix 
change_local = 1; 
  
%passes used to track the number of times the program loops to 
determine 
    %local_positions with precision of .01 meters (note: this may not 
be 
    %accurate to actual positions) 
%%  
passes = 0; 
  
while change_local>0 && passes < 100 
        change_local = 0; 
        passes = passes+1; 
        
    for n = 4:num_of_nodes+1 
  
%determine which solution type to use (Matrix or Law of Cosines) 
  
    soln = Solution_Type_3(n);   
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            if soln <= 1       %insufficient range data for solution 
               % disp (['Pass: ',num2str(passes),', For node: ', 
num2str(X_positions (n,1))])  
               % disp('Cannot solve this node due to an insufficient 
number of ranges.') 
  
                 
            elseif soln == 2     %mirror image due to only two ranges 
               % disp (['Pass: ',num2str(passes),', For node: ', 
num2str(X_positions (n,1))])  
               % disp ('This point has a mirror image due to only 
having two ranges.') 
                change_local = change_local + Cosines_Approach_3 (n); 
                 
               % X_positions 
               % Y_positions 
               % active_branches 
                 
            else    %enough data to find location exactly 
                change_local = change_local + Matrix_Approach_3 (n); 
                 
               % X_positions 
               % Y_positions 
               % active_branches 
  
            end 
  
    end 
   disp(['Completed pass: ',num2str(passes)])  
end 
  
b = X_positions; 
c = Y_positions; 
d = active_branches; 
e = passes; 
 
 

Stack_Build.m 

function b = Stack_Build (nodes, master, on_x, source) 
% LT Dave Zinkhon   13 Jan 2009 
    %program to load data layers a place in stack for reduction by 
Stack_Sift               
  
%Inputs 
%   nodes - vector numbered addresses of all nodes in the field 
%   master - address of node that will be used as geographic reference 
for 
%            solutions.  All solutions will have this node located at 
(0,0) 
%   on_x - address of node that will placed at a known bearing from 
master. 
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%          All solutions will have this node at (Range (master-
>on_x),0) 
%   source - matrix containing names of .txt files containing range 
data 
  
%Output 
%   b - 3-D stack of node-to-node range data that can then be analyzed 
to 
%       eliminate outliers in the data (Stack_Sift) 
     
num_nodes = length(nodes);  %number of nodes deployed (allows creating 
array beforehand) 
num_files = length(source(:,1));   %number of files to be loaded  
                                   %Same as numbers of layers in the 
cube 
template = zeros (num_nodes+1);     %template will be used to ensure 
each layer of stack matches 
Stack = zeros (num_nodes+1,num_nodes+1,num_files); 
  
for i = 1:num_nodes     %places node names in row and column headers 
    template (1,i+1) = nodes(i); 
    template (i+1,1) = nodes(i); 
end 
  
%move master to front position of rows & columns 
    loc = find (template(1,:)== master); %returns column index of 
master node 
    template (1,loc) = template (1,2);  %moves node in first position 
to master's position 
    template (loc,1) = template (2,1);  %same for rows 
    template (1,2) = master;    %moves master to 1st position 
    template (2,1) = master;    %same for rows 
  
%move on_x to 2nd position in rows and columns 
    loc = find (template(1,:)== on_x); %returns column index of on_x 
node 
    template (1,loc) = template (1,3);  %moves node in first position 
to on_x's position 
    template (loc,1) = template (3,1);  %same for rows 
    template (1,3) = on_x;    %moves on_x to 1st position 
    template (3,1) = on_x;    %same for rows     
     
for d = 1:num_files 
    name = source(d,:); 
    data = load (name);       %name of file to be loaded (must be full) 
                 
    layer = template; 
  
    for i = 1:length(data(:,1)) 
     src = data(i,1);     %determines source node 
        for j = 2:length(data(1,:)) 
            if rem(j,2)==0 
                rcvr = data(i,j);    %determines receiver node 
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                rng = data (i,j+1);    %determines range between source 
and rcvr 
         
 %find proper row and column in ranges to store data 
                row = find(layer(:,1)== src); 
                col = find(layer(1,:)== rcvr); 
                if rcvr == 0    %prevents overwriting row headers 
                    row = 1; 
                    col = 1; 
                end 
                layer(row,col) = rng;   %store range data  
            end 
        end 
    end 
  
    Stack(:,:,d) = layer;   
    %Stack(1,1,d) = d; 
        %range cube has raw ranges from each data run stacked over time 
end 
  
b = Stack; 

 

Stack_Sift.m 

function b = Stack_Sift (Stack) 
% LT Dave Zinkhon   13 Jan 2009 
    %program to load remove extraneous data from node to node ranges in 
        %Stack passed in  
    %weight array is used to zero weight any data that is outside 10%CI 
of mean (1.645 standard deviations) 
    %For the output, a NaN will appear in any Range slot that does not 
have any good ranges including along the diagonal 
         
 
num_nodes = length(Stack(1,:,1))-1; %number of nodes in field 
num_files = length(Stack(1,1,:));   %height of data stack 
  
ranges = zeros(2* num_files,1);     %stores node to node ranges down 
stack 
weights = zeros(2* num_files,1);    %stores weights for data removal (0 
or 1) 
  
Good_Ranges = zeros(num_nodes+1, num_nodes+1);  %output matrix 
Good_Ranges(1,:) = Stack (1,:,1); 
Good_Ranges(:,1) = Stack (:,1,1); 
%count = 0 
  
%Portion for sorting bad ranges out of good for entire cube 
    %Good_Ranges will contain mean of usable ranges for output to 
Main.m 
for i = 2:num_nodes+1 
    for j = 2:num_nodes+1 
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        for d = 1:num_files     %retrieve all data 
            ranges(d) = Stack (i,j,d);  %stores a->b range 
            ranges(length(ranges)-d+1) = Stack(j,i,d);  %stores b->a 
range 
        end 
         
        for d = 1:length(weights) 
            if ranges(d) > 1    %assign weight if positive range exists 
                weights(d) = 1; 
            else 
                weights(d) = 0; 
            end 
        end 
         
        worst = .00001;   %net > zero to get initial entry to loop 
        worst_loc = 0; 
        while worst == .00001 
            rXw = ranges .* weights; 
            mean = sum(rXw)/sum(weights);   %mean of ranges still in 
use 
             
            tot = 0; 
            for a = 1:length(ranges) 
                tot = tot + ((ranges(a) - mean)^2) * weights(a); 
            end 
             
            dev = sqrt(tot/(sum(weights)-1));   %stand dev of ranges 
still in use 
             
            for a = 1:length(ranges) 
                if weights(a) == 1  %only look at ranges still being 
weighted 
                    if abs(ranges(a)-mean) > 1.645*dev  %check if 
outside CI 
                        if abs(ranges(a)-mean) > worst   %check to see 
if furthest outside mean 
                            worst = abs(ranges(a)-mean); 
                            worst_loc = a; 
                        end 
                    end 
                end 
            end 
             
            if worst_loc > 0    %eliminate range outside CI 
                weights(worst_loc) = 0; %set weight to zero (removes 
range) 
                worst_loc = 0;  %resets worst location 
                worst = .00001; %ensures will run through while loop 
again 
            else 
                worst = 0;  %no range outside CI => exist while loop 
            end 
        end 
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        Good_Ranges(i,j) = mean;    %stores mean of remaining ranges 
        Good_Ranges(j,i) = mean; 
        Good_Ranges(1,1) = NaN;     %puts a Nan in upper left 
  %count = 0       
    end 
end 
  
b = Good_Ranges; 
 

 

Data Analysis / Creation 

Halifax_Analysis 

%LT Dave Zinkhon    8 Mar 2008 
    %Halifax Analysis 
    %Used to find solutions to Halifax ad hoc data 
    %The quantities saved for each iteration are:  
        %number of passes required to get results 
        %number of nodes that have solutions 
        %number of ambiguous solutions 
        %smallest total range difference between actual node locations 
and 
            %the solution for any ambiguous solution 
             
  
close all 
clc 
  
r=1; 
  
Stack = Stack_Build(in_nodes, master, on_X, Halifax_Source); 
         
Shift_Result = Stack_Sift (Stack); 
         
[X_positions, Y_positions, active_branches, passes] = Gen_Solver 
(Shift_Result); 
         
  
%Statistic Collection for number of passes, number of ambiguous 
        %solutions, number of nodes not localized 
tot_passes(r) = passes; 
     
NaN_nod_sol = 1-isnan(X_positions(:,2)); 
nod_sol(r) = sum(NaN_nod_sol); 
  
ambig(r) = length(active_branches); 
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%%%%%Comparison of solutions to Actual Locations 
Rotate_Original_Nodes   %rotates source nodes for comparison (master = 
0,0... 
     
%take only non-NaN solutions from X_positions and Y_positions 
X_quick_ref = zeros(length(X_positions(:,1)), 
length(active_branches)+1); 
X_quick_ref(:,1) = X_positions(:,1); 
  
Y_quick_ref = X_quick_ref; 
  
for i = 1:length(active_branches) 
   col =  active_branches(i)+2; 
   X_quick_ref(:,i+1) = X_positions(:,col); 
   Y_quick_ref(:,i+1) = Y_positions(:,col); 
     
end 
  
  
for i = 2:length(active_branches)+1 
    er_tot = 0; 
    NaN_branch = 1-isnan(X_quick_ref(:,i)); 
    for j = 2:length(X_quick_ref(:,1)) 
             
        if NaN_branch(j) == 1  %find tot range error from actual to 
active branch 
            x_er = abs(rotated_nodes(j-1,2)-X_quick_ref(j,i)); 
            y_er = abs(rotated_nodes(j-1,3)-Y_quick_ref(j,i)); 
            er_tot = er_tot + sqrt (x_er^2 + y_er^2); 
        end 
             
            
    end 
    min_er(i-1) = er_tot; 
end 
     
    Best_Error(r) = min(min_er); 
     
%%%%%Attempt to remove redundant ambiguous solutions 
redundant = 0; 
for i = 2:length(X_quick_ref(1,:)) 
    not_redundant = 0; 
    for k = i+1:length(X_quick_ref(1,:)) 
        for j = 2:length(X_quick_ref(:,1)) 
            if (abs(X_quick_ref(j,i) - X_quick_ref(j,k)) >=17) && 
(abs(Y_quick_ref(j,i) - Y_quick_ref(j,k)) >=17) 
                not_redundant = not_redundant + 1; 
            end 
        end 
         
        if not_redundant < 1 && i~=k 
            redundant(i,k) = 1; 
        else 
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            redundant(i,k) = 0; 
        end 
    end 
end 
     
tot_redundant(r) = sum(sum(redundant)); 
              
 

Error_Free 

%LT Dave Zinkhon    8 Mar 2008 
    %Error Free 
    %Used to rune multiple iterations of error free generated nodes for 
        %statistical analysis 
    %The quantities saved for each iteration are:  
        %number of passes required to get results 
        %number of nodes that have solutions 
        %number of ambiguous solutions 
        %smallest total range difference between actual node locations 
and 
            %the solution for any ambiguous solution 
             
clear all 
close all 
clc 
  
runs = 50;     %number of node sets that are to be analyzed 
  
for r = 1:runs 
    r 
    %program that will create nodes for analysis 
    Point_Gen_Gaus_for_Stack 
         
    Shift_Result = Stack_Sift (Stack); 
         
    [X_positions, Y_positions, active_branches, passes] = Gen_Solver 
(Shift_Result); 
         
  
    %Statistic Collection for number of passes, number of ambiguous 
        %solutions, number of nodes not localized 
    tot_passes(r) = passes; 
     
    NaN_nod_sol = 1-isnan(X_positions(:,2)); 
    nod_sol(r) = sum(NaN_nod_sol); 
  
    ambig(r) = length(active_branches); 
         
     
%%%%%Comparison of solutions to Actual Locations 
    Rotate_Original_Nodes   %rotates source nodes for comparison 
(master = 0,0... 
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    %take only non-NaN solutions from X_positions and Y_positions 
    X_quick_ref = zeros(length(X_positions(:,1)), 
length(active_branches)+1); 
    X_quick_ref(:,1) = X_positions(:,1); 
  
    Y_quick_ref = X_quick_ref; 
  
    for i = 1:length(active_branches) 
        col =  active_branches(i)+2; 
        X_quick_ref(:,i+1) = X_positions(:,col); 
        Y_quick_ref(:,i+1) = Y_positions(:,col); 
     
    end 
     
     
    for i = 2:length(active_branches)+1 
        er_tot = 0; 
        NaN_branch = 1-isnan(X_quick_ref(:,i)); 
        for j = 2:length(X_quick_ref(:,1)) 
             
            if NaN_branch(j) == 1  %find tot range error from actual to 
active branch 
                x_er = abs(rotated_nodes(j-1,2)-X_quick_ref(j,i)); 
                y_er = abs(rotated_nodes(j-1,3)-Y_quick_ref(j,i)); 
                er_tot = er_tot + sqrt (x_er^2 + y_er^2); 
            end 
             
            %if er_tot < min_er  %store smallest total error for any 
ambiguous soln 
            %    min_er = er_tot; 
            %    soln = i; 
            %end 
        end 
        min_er(i-1) = er_tot; 
    end 
     
    Best_Error(r) = min(min_er); 
     
              
end 

 

Point_Gen_for_Stack 

%LT Dave Zinkhon    7 Aug 08 
    %Creating points in Range Area 
    %Determining ranges between points 
    %Plotting points within area 
     
    %22 Aug 08 - changed ranges format to match format created when 
inputting data 
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    %24 Sep 08 - updated to put Gaussian (mu,s) range error in ranges 
    %17 Feb 09 - changed to create stack of ranges for testing sifter 
    %09 Mar 09 - changed how randomness was added to make 
        %   r(report) = r(actual)*a + b 
        %   a = normrnd(1,.1) 
        %   b = b = (.05*ranges)*chi2rnd(1) note:chisqr(1) has mean of 
1 
     
w = 5000;   %width of area (x) in meters 
l = 5000;   %length of area (y) in meters 
num_of_nodes = 5;     %number of nodes in area 
mu = 1;    %mean of range offset 
s = .1;    %standard dev of offset 
layers = 50;    %number of routes run by ad-hoc network 
max_range = 4000;   %maximum range that would be calculated/received by 
network 
  
nodes = zeros(num_of_nodes,3);      %array for storing node location 
  
for i = 1:num_of_nodes        %loop to put node #, x-location, y-
location 
    nodes(i,1) = i; 
    nodes(i,2) = unidrnd(w); 
    nodes(i,3) = unidrnd(l); 
end 
  
ranges = zeros (num_of_nodes+1);    %array for storing node to node 
ranges 
  
for i = 1:num_of_nodes     %makes row and column headers   
    ranges (i+1,1) = i; 
    ranges (1,i+1) = i; 
end 
  
%loop to determine ranges, normrnd component will result in range from 
1 to 2  
    %to be different from 2 to 1 to simulate differences expected in 
real data 
for i = 1:num_of_nodes         
    for j = 1:num_of_nodes 
        ranges(i+1,j+1) = sqrt((nodes(i,2)-nodes(j,2))^2+(nodes(i,3)-
nodes(j,3))^2); 
    end 
end 
  
for i = 1:length(ranges(1,:))   %places NaN's along diagonal 
    for j = 1:length(ranges(:,1)) 
        if i==j 
            ranges (i,j) = NaN; 
        end 
    end 
end 
  
%figure (1)      %plots each individual point within range specified 
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%    plot (nodes(:,2),nodes(:,3), 'bo'); 
%   axis([0,w,0,l]) 
  
%Build Stack here     
  
Stack = zeros (num_of_nodes+1,num_of_nodes+1,layers); 
  
%put headers on each column/row 
for k = 1:layers 
    Stack(1,:,k) = ranges (1,:); 
    Stack(:,1,k) = ranges (:,1); 
end 
  
for k = 1:layers 
    for i = 1:num_of_nodes         
        for j = 1:num_of_nodes 
            Stack(i+1,j+1,k) = 
ranges(i+1,j+1)*normrnd(mu,s)+(.05*ranges(i+1,j+1))*chi2rnd(1); 
             
            if Stack(i+1,j+1,k) > max_range 
                Stack(i+1,j+1,k) = NaN; 
            end 
             
            %ensures that range exists between master and on_X 
            if i+1==3 && j+1==2 
                Stack (i+1,j+1,k) = 
ranges(i+1,j+1)*normrnd(mu,s)+(.05*ranges(i+1,j+1))*chi2rnd(1); 
            end 
             
            if i+1==2 && j+1==3 
                Stack (i+1,j+1,k) = 
ranges(i+1,j+1)*normrnd(mu,s)+(.1*ranges(i+1,j+1))*chi2rnd(1); 
            end 
             
        end 
    end 
end 
  
  
clear l w i j num_of_nodes a b mu s k layers max_range 

 

Rotate_Original_Nodes.m 

%LT Dave Zinkhon    22 OCT 08 
  
%% 
%Translating and rotating generated points to local axis 
  
master = 3; %added for generated points 
on_X = 20; 
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m = find (nodes(:,1) == master); 
p = find (nodes(:,1) == on_X); 
  
x_off = nodes(m,2); 
y_off = nodes(m,3); 
  
offset_nodes = nodes; 
  
num_of_nodes = length(nodes(:,1)); 
  
  
ranges = zeros (num_of_nodes+1);    %array for storing node to node 
ranges 
  
for i = 1:num_of_nodes     %makes row and column headers   
    ranges (i+1,1) = in_nodes(i); 
    ranges (1,i+1) = in_nodes(i); 
end 
  
for i = 1:num_of_nodes        %loop to determine ranges 
    for j = 1:num_of_nodes 
        ranges(i+1,j+1) = sqrt((nodes(i,2)-nodes(j,2))^2+(nodes(i,3)-
nodes(j,3))^2); 
    end 
end 
  
for i = 1:length(ranges(1,:))   %replaces 0's with NaN's 
    for j = 1:length(ranges(:,1)) 
        if ranges (i,j) == 0 
            ranges (i,j) = NaN; 
        end 
    end 
end 
  
%% 
  
for i = 1:length(nodes(:,1)) 
   offset_nodes (i,2) = nodes(i,2) - x_off;   
   offset_nodes (i,3) = nodes(i,3) - y_off; 
end 
%% 
opp = offset_nodes(p,3); 
adj = offset_nodes(p,2); 
  
%possible scenarios for quadrants for on_X position to master 
  
rot = atan2(opp,adj); 
if rot < 0 
    rot = rot+2*pi; 
end 
  
rotated_nodes = offset_nodes; 
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for i = 2:length(nodes(:,1)) 
   theta_o = atan2(offset_nodes(i,3),offset_nodes(i,2)); 
   if theta_o < 0 
       theta_o = theta_o + 2*pi; 
   end 
   rotated_nodes (i,2) = ranges(i+1,2)*cos(theta_o-rot);   
   rotated_nodes (i,3) = ranges(i+1,2)*sin(theta_o-rot);  
end 
  
figure (2)      %Given (known) positions 
for i = 1:length(rotated_nodes) 
    if i == 1 
        plot (rotated_nodes(i,2),rotated_nodes(i,3), 
'bv','MarkerFaceColor',[0 0 1]); 
        node_name = num2str(rotated_nodes(i,1)); 
        text(rotated_nodes(i,2)+10,rotated_nodes(i,3)+10,{node_name}); 
    else 
    plot (rotated_nodes(i,2),rotated_nodes(i,3), 'b.', 
'MarkerSize',15); 
    node_name = num2str(rotated_nodes(i,1)); 
    text(rotated_nodes(i,2)+10,rotated_nodes(i,3)+10,{node_name}); 
    end 
  
    hold on 
end 
title ('Rotated Actual Node Locations'); 
xlabel ('x-axis (m)'); 
ylabel ('y-axis (m)'); 
grid on 
axis equal tight 
axis([-3000, 5000, -2500, 1500]) 
  
hold off     
  
clear p x_off y_off offset_nodes opp adj rot  

 

Functions called by other programs 

Reorder_3.m 

function Reorder_3 (master, on_X) 
  
%LT Dave Zinkhon    8 OCT 08 
    %This function will move the master and on_X nodes to the top of 
all 
    %matrixes to ease understanding and reduce loop iterations required 
in 
    %the Main_3 
     
%20 Oct 08 - Revise due to error found if one of "known" nodes was 
already 
            %in first two rows 
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global ranges; 
  
%stores data in first rows 
store_1st = ranges(2,:); 
  
%finds which rows previously held master node 
m = find (ranges(:,1) == master); 
  
%move master and on_X ranges data to top row 
ranges(2,:) = ranges(m,:); 
  
%move top row data to original master row 
ranges(m,:) = store_1st; 
  
%move column order to match row order 
  
%stores data in first and second columns 
store_1st = ranges(:,2); 
  
%move master and on_X ranges data to 1st two columns 
ranges(:,2) = ranges(:,m); 
  
%move top two row data to original master and on_X rows 
ranges(:,m) = store_1st; 
  
%Repeat for on_X node 
store_2nd = ranges(3,:); 
n = find (ranges(1,:) == on_X); 
ranges(3,:) = ranges(n,:); 
ranges(n,:) = store_2nd; 
ranges(:,3) = ranges(:,n); 
store_2nd = ranges(:,3); 
ranges(:,n) = store_2nd; 
   

 

Solution_Type_3.m 

function solution = Solution_Type_3 (n) 
%LT Dave Zinkhon    19 SSEP 08 
    %writing logic to determine if law of cosines should be used or 
Matrix 
        %Solution should be used 
    %O/P is matrix stating which type of method should be used to find 
location     
    %2 Oct 08 - Modified to test based on known nodes and ranges vice 
just 
                %known ranges, For use in Main_2 
    %8 Oct 08 - Modified for Main_3 to match new data structure             
  
global ranges; 
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global X_positions; 
     
%solution = <1 means cannot determine anything (single range available) 
%solution = 2 means have two ranges and will use law of cosines (Find 
Locally) 
%solution >= 3 means have 3 or more ranges and will use matrix solution 
  
R = isnan(ranges(:,n));%logic test for NaN's in ranges               
LN = isnan(X_positions(:,2));%logic test for NaN's in nodes 
corr = R+LN;    %if result is zero, means is range to known position 
  
usable = find (corr==0);    %array that know which nodes are usable 
  
solution = length (usable); 

 

Bin_to_Dec.m 

function dec = Bin_to_Dec_Converter (branch) 
  
%LT Dave Zinkhon     8 Oct 08 
  
    %This function will take the position within a branch 
        %variables and convert them into a base10 number that will be 
used 
        %to store the node locations in the proper column of 
X_positions 
        %and Y_positions 
         
global master_branch; 
  
%b is used to reverse value of exponent as i increases 
b = length (master_branch(:,1)); 
  
dec = 0; 
for i = 2:length (master_branch(:,1)) 
    a = branch(i,2) * (2^(b-i)); 
    dec = dec + a; 
end 
  
 

Dec_to_Bin.m 

function bin = Dec_to_Bin_Converter (dec) 
  
%LT Dave Zinkhon     8 Oct 08 
  
    %This function will take the position within a branch 
        %variables and convert them into a base10 number that will be 
used 
        %to store the node locations in the proper column of 
X_positions 
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        %and Y_positions 
         
global master_branch; 
  
%b is used to reverse value of exponent as i increases 
b = length (master_branch(:,1)); 
  
bin = master_branch; 
  
for i = 2:length (master_branch(:,1)) 
    if (2^(b-i)) <= dec     %places a one in appropriate node 
        dec = dec - 2^(b-i); 
        bin (i, 2) = 1; 
    else 
        bin (i, 2) = 0;     %else place a zero (ensures overwriting) 
    end 
end 
  
 

Cosines_Approach_3.m 

function change = Cosines_Approach_3 (n) 
%% 
%LT Dave Zinkhon    8 Aug 08 
    %Takes ranges from Point_Gen plots them in local reference frame 
    %19 Sep 08 - Modified to only work for 2 known ranges, Matrix 
approach 
                %will be taken for 3 known ranges solution (Matrix 
                %Approach) 
    %22 Sep 08 - Removed plotting function and moved to 
Martix_Approach.m) 
    %24 Sep 08 - formatted to function for use in Main_1 
    %15 Oct 08 - altered for use in Main_3, using branch tracking, 
                %separate X and Y position tracking 
    %23 Oct 08 - replaced elseif atan portion with atan2 function 
     
global X_positions; 
global Y_positions; 
global ranges; 
global master_branch; 
global active_branches; 
  
%length is determined prior to executing loop to prevent unnecessary 
    %looping if active_branches is added to during loop 
length_active_branches = length(active_branches); 
  
for i = 1:length_active_branches 
%%     
%points to proper column for given branch number 
    branch_col = active_branches(i)+2;      %+2 aligns to proper column 
number 
    branch = Dec_to_Bin_Converter (active_branches(i)); 
%% 
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%Logic tests to determine which nodes are being referenced 
    R = isnan(ranges(:,n));%logic test for NaN's in ranges               
    LN = isnan(X_positions(:,branch_col));%logic test for NaN's in 
nodes 
    corr = R+LN;    %if result is zero, means is range to known 
position 
  
    usable = find (corr==0);    %array that know which nodes are usable 
    
%% 
if length(usable)>=2 
     
%used to track when changes are made to position matrixes 
    prior_x = X_positions (n,branch_col); 
    prior_y = Y_positions (n,branch_col);     
%%     
%Calculation of what rotation is required about local axis  
    if X_positions(usable(2),branch_col) > 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
> Y_positions(usable(1),branch_col) 
        theta_axis = atan((Y_positions(usable(2),branch_col) - 
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) - 
X_positions(usable(1),branch_col))); 
    elseif X_positions(usable(2),branch_col) < 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
> Y_positions(usable(1),branch_col) 
       theta_axis = pi() + atan((Y_positions(usable(2),branch_col) - 
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) - 
X_positions(usable(1),branch_col))); 
    elseif X_positions(usable(2),branch_col) < 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
< Y_positions(usable(1),branch_col) 
         theta_axis = pi() + atan((Y_positions(usable(2),branch_col) - 
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) - 
X_positions(usable(1),branch_col)));     
    elseif X_positions(usable(2),branch_col) > 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
< Y_positions(usable(1),branch_col) 
        theta_axis = atan((Y_positions(usable(2),branch_col) - 
Y_positions(usable(1),branch_col))/(X_positions(usable(2),branch_col) - 
X_positions(usable(1),branch_col))); 
    elseif X_positions(usable(2),branch_col) == 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
> Y_positions(usable(1),branch_col) 
        theta_axis = pi()/2; 
    elseif X_positions(usable(2),branch_col) == 
X_positions(usable(1),branch_col) && 
Y_positions(usable(2),branch_col)<Y_positions(usable(1),branch_col) 
        theta_axis = -pi()/2; 
    elseif X_positions(usable(2),branch_col) > 
X_positions(usable(1),branch_col) && Y_positions(usable(2),branch_col) 
== Y_positions(usable(1),branch_col) 
        theta_axis = 0; 
    else 
        theta_axis = -pi(); 
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    end 
%%     
%This is where calculation is done based on law of cosines to find 
third 
    %point 
top = ranges(usable(1),n)^2 + ranges(usable(1),usable(2))^2 - 
ranges(usable(2),n)^2; 
bot = 2 * ranges(usable(1),n) * ranges (usable(1),usable(2)); 
theta_tri = acos (top/bot); 
  
%%    
    if branch(n,2) == 0 
%Left side solution         
        X_positions (n,branch_col) = X_positions (usable(1),branch_col) 
+ ranges(usable(1),n) * cos(theta_axis+theta_tri); 
        Y_positions (n,branch_col) = Y_positions (usable(1),branch_col) 
+ ranges(usable(1),n) * sin(theta_axis+theta_tri); 
  
%now shift to new alternative column (if applicable) for right side 
solution 
        branch(n,2) = 1; 
        new_branch_num = Bin_to_Dec_Converter(branch); 
        prior = find(active_branches == new_branch_num); 
            if prior  %logic test to see if prior is empty array (if 
branch already exists, do nothing)  
            else    %adds new branch number to active_branches if 
branch not already exist 
                active_branches(length(active_branches)+1) = 
new_branch_num;  
            end 
        new_branch_col = new_branch_num+2;     
%Update branch solution sets  
        master_branch (n,2) = 1;          
%copy previous branch values to new column 
        X_positions (:,new_branch_col) =  X_positions (:,branch_col); 
        Y_positions (:,new_branch_col) =  Y_positions (:,branch_col); 
%if 3rd node is to right side =>theta_tri is subtracted 
        X_positions (n,new_branch_col) = X_positions 
(usable(1),new_branch_col) + ranges(usable(1),n) * cos(theta_axis-
theta_tri); 
        Y_positions (n,new_branch_col) = Y_positions 
(usable(1),new_branch_col) + ranges(usable(1),n) * sin(theta_axis-
theta_tri); 
    end 
%% 
%test to see if positions were updated 
    if abs(prior_x - X_positions (n,branch_col)) <1 && abs(prior_y - 
Y_positions (n,branch_col))<1 
        change = 0; 
    else 
        change = 1; 
    end     
end 
end 
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Matrix_Approach_3.m  

function change = Matrix_Approach_3(n) 
  
%LT Dave Zinkhon    22 SEP 08 
%Program to solve local position when 3 ranges are known to nodes with 
        %know positions 
%23 SEP 08 - Revised to make function that is passed ranges and current 
local positions 
                %and make changes for current node of interest (n is 
index of node of interest) 
%01 Oct 08 - Revised to take nodes and ranges 3 at a time and solve 
vice 
                %one single solution 
%17 Oct 08 - Revised to use X_positions and Y_positions                 
                 
global X_positions; 
global Y_positions; 
global ranges; 
global active_branches; 
                 
%length is determined prior to executing loop to prevent unnecessary 
    %looping if active_branches is added to during loop 
length_active_branches = length(active_branches); 
  
%set convergence threshold for solutions 
conv_thresh = 17; 
  
  
for v = 1:length_active_branches 
%%     
%points to proper column for given branch number 
    branch_col = active_branches(v)+2;      %+2 aligns to proper column 
number 
  
%% 
%Logic tests to determine which nodes are being referenced 
    R = isnan(ranges(:,n));%logic test for NaN's in ranges               
    LN = isnan(X_positions(:,branch_col));%logic test for NaN's in 
nodes 
    corr = R+LN;    %if result is zero, means is range to known 
position 
  
    usable = find (corr==0);    %array that know which nodes are usable 
%%     
if length(usable)>=3  
  
%used to track when changes are made to position matrixes 
    prior_x = X_positions (n,branch_col); 
    prior_y = Y_positions (n,branch_col);     
 %%    
    combo = comb_gen(length(usable),3); %matrix of possible 
combinations of usable data (see Reed) 
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    for i = 1:length(combo(:,1)) 
        x = combo(i,1);     %x,y,z, are holders for which line of 
usable should be referenced 
        y = combo(i,2); 
        z = combo(i,3); 
         
        k = 1; 
        for j = [x,y,z]    %imports range data into proper matrix form 
            a(k,1) = ranges (usable(j), n); 
            c(k,1) = X_positions(usable(j),branch_col); 
            c(k,2) = Y_positions(usable(j),branch_col); 
            k=k+1; 
        end 
  
%Calculations performed here based on Reed's Matrix Formula 
        sqr_mat = a(1:end-1, :).^2 - a(2:end, :).^2; 
        b = sum(sqr_mat, 2);    %diff of sqr of ranges 
    
        sqr_mat = c(1:end-1, :).^2 - c(2:end, :).^2; 
        d = sum(sqr_mat, 2);    %diff of sqr of positions 
        e = c(2:end, :) - c(1:end-1, :);    %diff of positions 
        out = 2*e \ (b-d); 
  
        
%verify that range from calculated position to accepted position are  
        %within acceptable criteria 
        poss (i,1) = out (1,1); 
        poss (i,2) = out (2,1); 
        accept_criteria = .1;   %fraction difference between actual 
range  
                                %and calculated range that is 
acceptable 
        for p = 1:3         
            range_chk = sqrt((poss(i,1)-c(p,1))^2+(poss(i,2)-
c(p,2))^2); 
            if abs((range_chk - a(p))/a(p)) > accept_criteria 
                poss(i,1) = NaN; 
                poss(i,2) = NaN; 
            end 
        end 
         
    end 
    
%take mean position of all combinations that were not rejected 
    q = isnan(poss);    %logic test for good data 
     
    sum_x = 0;  %used to take mean 
    sum_y = 0; 
    tot = 0; 
     
    for r = 1:length(q(:,1)) 
        if q(r,1) == 0 
            sum_x = sum_x + poss (r,1); 
            sum_y = sum_y + poss (r,2); 
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            tot = tot + 1; 
        end 
    end 
    
    X_positions (n, branch_col) = sum_x/tot; 
    Y_positions (n, branch_col) = sum_y/tot; 
%% 
%test to see if change was made to local program 
    if abs(prior_x - X_positions (n,branch_col)) <conv_thresh && 
abs(prior_y - Y_positions (n,branch_col))<conv_thresh 
        change = 0; 
    else 
        change = 1; 
    end 
     
end 
  
end 
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APPENDIX B:  AMBIGUOUS SOLUTIONS FOR ST. MARGARET’S 
BAY SEA TRIAL 

This appendix includes the sixteen ambiguous solutions for the ad hoc discoveries 

conducted at St. Margaret’s Bay. 
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